Live Episodes and Reruns of Virtual Field Trips

Alison Jolley^{1,2}, Ben Kennedy², Tim Stahl², Sam Hampton³, Thomas Wilson², Erik Brogt⁴, Nathaly Reyna^{2,3}, Katherine Pedley², Alistair Davies², Pete Sommerville⁵

¹Now in Earth, Ocean and Atmospheric Sciences, University of British Columbia: <u>ajolley@eoas.ubc.ca</u> ²Geological Sciences, University of Canterbury

³Frontiers Abroad Aotearoa Ltd

⁴Academic Services Group, University of Canterbury

⁵CORE Education Ltd

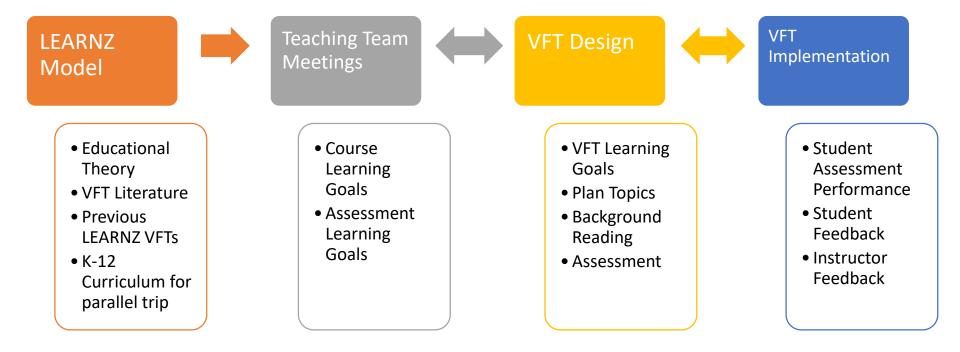
Field trips are valued in geology, yet face challenges

- Connect classroom learning to the real world
- Develop content knowledge and transferrable skills
- However, field trips may be physically and mentally demanding
- Limited by logistical, financial and health and safety pressures
- Virtual field trips offer alternative or complementary experiences to traditional field trips that help improve accessibility

LEARNZ virtual field trip model

- Translate the successful K-12 virtual field trip model developed by LEARNZ to the postsecondary setting
- Built on Universal Design for Learning (UDL) principles

Research questions and methods


- 1. What were students' experiences in the virtual field trip?
- 2. How did student engagement in the postvirtual field trip workshop compare to previous years?
- Answered with Learning Management System usage data, student questionnaires, instructor interviews

Course setting

- GEOL113: Environmental Geohazards
- Not required for geology majors, but popular option
- Common elective, particularly for engineering majors
- ~100 students/year

Course Week	Lecture Topics	Practical Components	Assessment
1	Geohazards and Society		
2	Origins of Earthquakes		
3	Measuring Earthquakes		
4	Earthquake Hazards	Virtual Field Trip – Week Long	Quizzes (Formative)
5	Geohazards Case Studies	Workshop – One Day	Report (30%)
6	Volcanic Hazards 1		
7	Volcanic Hazards 2	Field Trip – One Day	Report (30%)
8	Managing Volcanic Disasters		
9	Coastal Hazards		
10	Landslide Hazards		
11	Flood Hazards		
12	Current Geohazard Issues		Final Exam (40%)

Design process

Topics and learning goals

Topics	Learning Goals
Geohazards	Identify major geohazards and cascading multihazards in New Zealand, with special attention to the West Coast and Franz Josef.
Seismicity of the Alpine Fault	Use the paleo-seismic record to interpret how often the Alpine Fault ruptures and from this, estimate the likelihood of a future earthquake.
Earthquakes in New Zealand	Estimate the length of the Alpine fault and deduce the likely magnitude of the earthquake and its shaking intensity at Franz Josef.
Earthquake Impacts on the Natural Environment	Identify features in the landscape that result from earthquake shaking and can contribute to river aggradation and flooding.
Earthquake Impacts on the Built Environment	What will be the likely impacts of an Alpine fault earthquake and its consequential hazards on assets and lifelines (e.g. communications, transport, energy supply, water supply, services) on the West Coast? How long will these impacts last?
Hazard Management and Mitigation	What resources will be needed to respond to the earthquake and its impacts? What can be done in advance to reduce these impacts?

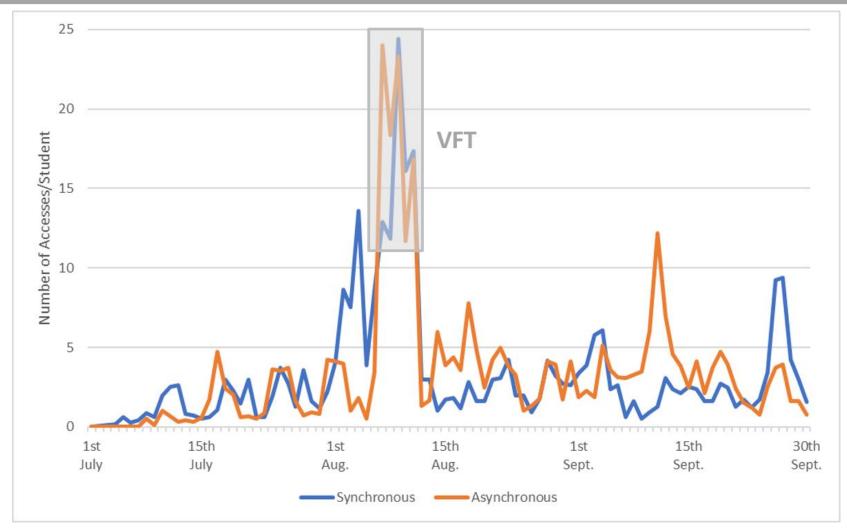
Filming plan

Lecture Time	Filming Times	Locations	Content Topics	Additional Materials
Tuesday 9 th (class at 2pm)	Sunday 7 th — Monday 8 th	Various stops on drive to West Coast via Arthur's Pass	Geohazards, Seismicity of the Alpine Fault	Tectonics of NZ figure, map of Alpine Fault, example of multihazard (relating to past rupture), average interval of Alpine Fault rupture figure, map of past rupture events
they are often follo	_	looding, etc. How to ι	-	ects not limited to the shaking we feel, I of the Alpine Fault to interpret
Wednesday 10 th (class at 5pm)	Monday 8 th — Tuesday 9th	Previous rupture site (Gaunt Creek), landslide deposit (Poerua Valley)	Earthquakes in NZ, Earthquake Impacts on the Natural Environment	Examples of geomorphic consequences length and magnitude figure, photos of recent flooding, photos of landslide deposits
	gnitude of shaking a boding and cascading		the Alpine Fault (esp	ecially in the case of a future rupture).
Friday 12 th (class at 4pm)	Wednesday 10 th – Thursday 11 th	Franz Josef overlook and township	Earthquake Impacts on the Built Environment, Hazard Management and Mitigation	Infrastructure maps (highways, train lines, power lines, etc.), photos of national/international aid, UC Geological Sciences Department's emergency materials

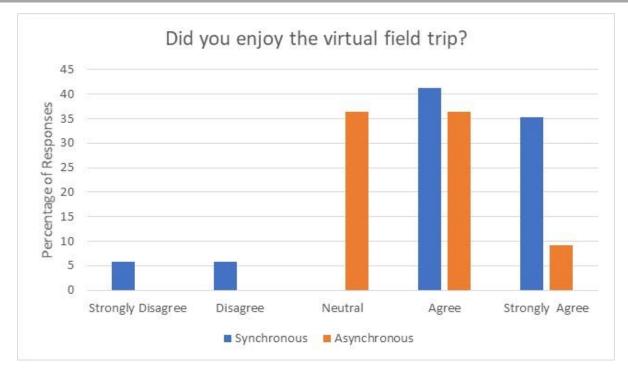
8

Live episodes

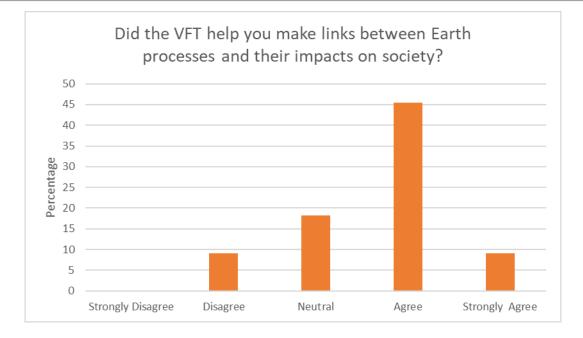
- 2016: videos filmed during the same week that students participated in virtual field trip
 - Student guide
 - Live A/V conference at the end of the week
- Live implementation came with some challenges:
 - Time constrained
 - Costly to run
 - Instructor frustration over logistics and pressures of working the framework into their course
 - Technical difficulties with A/V conference



Reruns


- 2017: videos from 2016 reused at same pace
 - Instructor guide
 - Google Earth component
- Save costs and decrease technical difficulties

Results: learning management system usage



Results: student perceptions

- "Was interesting getting to learn about a place through seeing it. Something different than your average lecture." (Synchronous)
- "It was good field prep before our actual fieldtrip and gave us a look into what fieldtrip[s] at higher levels will be like." (Asynchronous)

Results: student perceptions

 "Started to think about the geohazards and relevance. Made it easier and less stressful when coming to write the report." (Asynchronous)

Results: instructor interviews

- Perceived higher levels of attendance and engagement in the post-virtual field trip workshop than previously
- No discernable difference in skills or knowledge
- TAs reported they were able to spend more time on complexities of earthquake scenario presented, i.e., emergency management
 - Less time needed to explain natural/built environments related to the scenario
 - Students already connected to the reality
- Rerun instructor felt his lecture time was more flexible and students were more engaged during

Elements of successful virtual field trips

Constructively Aligned Content

- Background Readings
- Videos

Assessment

- Online Quizzes
- Workshop

Student Experience

- Student Guide Diaries
- Instructor Ownership

Connection to Place

- A/V Link with Experts
- Google Earth

- Results were interpreted to identify features that made both the live episodes and rerun virtual field trips successful
- Overarching elements were achieved in both versions, but the specifics of student experience and connection to place were changed in the rerun version

Conclusions

- LEARNZ model for virtual field trips is appropriate and engaging for postsecondary students
- Successfully reused the live episode content in the second iteration of the field trip, without drop in student engagement
- Instructor buy in for the rerun virtual field trip was important in revising and implementing materials

Future Work

- Continued refinement of the rerun virtual field trip content
 - Enhance sense of community (student contributed video tags, group video watching sessions?)
- Lessons learned from this project are feeding into the development of an Iceland virtual field trip for third year geology course (Magmatic Systems and Volcanology)
 - Parallel K-12 virtual field trip

Acknowledgements

- Ako Aotearoa Southern Hub Regional Project Fund
- EQC Earthquake Commission
- LEARNZ, Core Education
- Department of Geological Sciences, University of Canterbury
- Frontiers Abroad Aotearoa Ltd
- Teaching team and in-field experts
- Student participants