'Explain your reasoning' boxes in Physics multiple choice questions

Rachit Kumar

Supervisors: Dr Joss Ives, UBC Physics & Astronomy Dr Jared Stang, UBC Physics & Astronomy

Outline

- Scientific Background & Motivation
- Goals
- Method
- Results
- Conclusion
- Further work
- Summary

Scientific Background & Motivation

Andrew Heckler's Model:

Scientific Background & Motivation

- Andrew Heckler's model¹:
 - Competition between relevant and irrelevant dimensions.
 - Relative processing time (Dual process theory).
- Does an 'explain your reasoning' box affect student responses in this framework?

¹ A. F. Heckler, Psychology of Learning and Motivation 55, 227 (2011).

Goals

- 1. To confirm Heckler's model of relevant and irrelevant dimensions.
- 2. To quantify the effect of 'explain your reasoning' boxes on exam performance.

Method

- 1. Develop 4 questions each for the midterm and final exams of PHYS 100.
- 2. Half of students are asked to explain their reasoning.
- 3. Analyse the quantitative choice results to determine the characteristics of the effect of the treatment.
- 4. Transcribe student reasonings using a code that allows for further analysis.

Method

(Midterm) Net force (Mega Newtons) [1.5 pts] The net force on a rocket is shown. What happens to its speed? +4A: Speed keeps increasing. +2-B: Speed keeps decreasing. C: Speed remains constant. D: Not enough information to decide. 0 Ż Ž 4 E: First speeds up then slows down. 5 time (hrs)

[0.5 pts] Please explain your reasoning in 1-2 sentences:

Method

From quantitative data: most common distractors follow Heckler's model predictions.

From reading responses to Block question and Rocket question:

- Reasonings for the same choice have high similarity.
- Reasonings for irrelevant choices follow Heckler's model predictions.
- Reasoning word count, detail and reiteration of answer choice are similar between choices.

	Rocket question (Midterm)	Block question (Final)
Percentage correct	24% (control) 31% (treatment)	33% (control) 39% (treatment)
Percentage of incorrect choices corrected	8.52%	8.32%
Percentage of above accounted for by irrelevant choice decrease	15.5% (speed reduces)	159.8% (speed constant) -59.5% (speed reduces)
Percentage of correct choices with correct reasoning	86%	95%
Percentage of irrelevant choices with expected Heckler reasoning	80%	72.5%

	Rocket question (Midterm)	Block question (Final)
Percentage of incorrect choices corrected	8.52%	8.32%
Percentage of above accounted for by irrelevant choice decrease	15.5% (speed reduces)	159.8% (speed constant) -59.5% (speed reduces)

Effect of Treatment on fraction of correct answers

Conclusion

Goal 1: Confirm Heckler's model:

Conclusion: Heckler's model mostly explains the most popular incorrect choice.

Goal 2: Effect of 'explain your reasoning' box:

Conclusion: Results improved by ~8%. Migration of choices from incorrect to correct upon treatment is partly explained by Heckler's model.

Further work

- Perform quantitative analyses for the 6 other questions.
- Selectively transcribe more questions to inform the interpretation of the quantitative analyses.
- Suggestion: Replace 'explain your reasoning' box with multiple choice question.

Summary

- Experiment explored the relation of dual process theory to Heckler's model of relevant and irrelevant dimensions in Physics multiple choice questions.
- Promising but insufficient support was found for the predictive power of Heckler's model pertaining to the effect of 'explain your reasoning' boxes.

Acknowledgements

- Dr Joss Ives
- Dr Jared Stang
- Dr Rob Kiefl

A5 [1.5 pts]. Two vehicles of mass M and 2M are moving the <u>same direction</u> and with the <u>same speed</u> on a highway. Both drivers apply their brakes at the same time and both vehicles begin sliding. If the coefficient of kinetic friction μ_k between the tires and the road is the same for both vehicles, which vehicle stops first?

[0.5 pts] Please explain your reasoning for the above in 1-2 sentences.

A6 [2 pts]. A student pulls a block, initially at rest at x = 0.0 m, a distance of 80 cm across a smooth, level ice surface. Assume friction is negligible. As the block covers the first 40 cm, the student exerts a constant force of magnitude F. As the block moves between the 40 cm and 80 cm marks, the student continuously decreases the magnitude of the force from F to F/2. Describe the motion of the block between 40 cm and 80 cm.

A13 [2 pts]. The diagram below depicts two pucks on a frictionless table. Puck B is four times as massive as puck A. Starting from rest, the pucks are pushed across the table by two <u>equal</u> forces. Which puck has the greater kinetic energy upon reaching the finish line?

- A Puck A
- B Puck B
- ⓒ They both have the same amount of kinetic energy
- D Not enough information to determine

A14 [1.5 pts]. Three balls are launched from the <u>same</u> horizontal level with <u>identical speeds</u> $|\vec{v_0}|$ as shown below. Ball (1) is launched vertically upward, ball (2) at an angle of 60°, and ball (3) at an angle of 45°. All three balls have sufficient speed to reach the dashed line. Which ball is moving fastest (has the largest speed) at the level of the dashed horizontal line?

- A Ball 1
- B Ball 2
- © Ball 3
- D They all have the same speed
- (E) Not enough information to determine

[0.5 pts] Please explain your reasoning for the above in 1-2 sentences.

A3 [1.5 pts]. A position-time graph for a car is shown. At which time is the car moving faster?

- \bigcirc t_A
- $\textcircled{B} t_B$
- \bigcirc The speed is the same at t_A and t_B

 [0.5 pts] Please explain your reasoning for the above in 1-2 sentences.
 Grad propy

 ①
 ①

A4 [2 pts]. Three balls move through the air as shown. The balls move under the influence of gravity, and air resistance can be ignored. For which ball is the *magnitude* of the *net force* acting on the ball the largest?

- A Ball A
- B Ball B
- ⓒ Ball C
- D The magnitude of the net force is largest and equal for B and C.
- (E) The magnitude of the net force is the same for all three balls.

A7 [1.5 pts]. A rocket is launched straight up, and the <u>net force</u> (in MegaNewtons = millions of Newtons) on the rocket as a function of time is shown in this graph. The rocket travels straight up, with up being defined as the positive direction.

During the time interval from t = 2 hours to t = 3 hours, what happens to the speed of the rocket?

- A The rocket is speeding up the whole time
- ^B The rocket is slowing down the whole time.
- ⓒ The rocket is moving with a constant speed the whole time.
- D The rocket is speeding up at first, and then it slows down.
- (E) There is not enough information given to decide.

[0.5 pts] Please explain your reasoning for the above in 1-2 sentences.	Grader only
	0

A8 [2 pts]. Consider the following situations. In both situations, the person is pushing on the boxes with the same pushing force, F_{push} . The boxes are <u>at rest</u> in both situations and the total mass of the boxes in situation 2 is twice as large as in situation 1. Compare the magnitude of the friction forces, f_s , in the two situations.

